organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(2E)-3-[4-(Dimethylamino)phenyl]-1-(3-nitrophenyl)prop-2-en-1-one

Mohd Mustaqim Rosli,^a P. S. Patil,^b Hoong-Kun Fun,^a* Ibrahim Abdul Razak^a and S. M. Dharmaprakash^b

^aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ^bDepartment of Studies in Physics, Mangalore University, Mangalagangotri, Mangalore 574 199, India Correspondence e-mail: hkfun@usm.my

Received 19 April 2007; accepted 20 April 2007

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; R factor = 0.054; wR factor = 0.162; data-to-parameter ratio = 20.6.

In the title compound, C17H16N2O3, the dihedral angle between the benzene rings is $1.56 (7)^{\circ}$. The nitro group is coplanar with the attached benzene ring while the dimethylamino group is twisted slightly away from the attached benzene ring. A weak intramolecular C-H···O hydrogen bond is present in the molecular structure. The crystal structure is stabilized by intermolecular C-H···O hydrogen bonds, forming chains along the [011] direction.

Related literature

For bond-length data, see: Allen et al. (1987). For hydrogenbond motifs, see: Bernstein et al. (1995). For general background and related literature, see: Uchida et al. (1998); Watson et al. (1993); Patil, Dharmaprakash et al. (2006); Shettigar et al. (2006).

Experimental

Crystal data

 $C_{17}H_{16}N_2O_3$ $M_r = 296.32$ Triclinic, $P\overline{1}$ a = 6.4326 (2) Å b = 7.1724 (2) Å c = 16.5000 (6) Å $\alpha = 93.989 (2)^{\circ}$ $\beta = 96.973 \ (2)^{\circ}$

T = 100.0 (1) K

 $0.58 \times 0.25 \times 0.04 \text{ mm}$

Data collection

Bruker SMART APEX2 CCD area-	12950 measured reflections
detector diffractometer	4139 independent reflections
Absorption correction: multi-scan	2776 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2005)	$R_{\rm int} = 0.047$
$T_{\rm min} = 0.822, \ T_{\rm max} = 0.996$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.054$	201 parameters
$wR(F^2) = 0.162$	H-atom parameters constrained
S = 1.07	$\Delta \rho_{\rm max} = 0.31 \text{ e} \text{ Å}^{-3}$
4139 reflections	$\Delta \rho_{\rm min} = -0.33 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
С9−Н9А…О1	0.93	2.45	2.798 (2)	102
$C17-H17C\cdots O3^{i}$	0.96	2.59	3.430 (2)	146

Symmetry code: (i) x, y - 1, z - 1.

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 1998); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2003).

The authors thank the Malaysian Government and Universiti Sains Malaysia for Fundamental Research Grant Scheme (FRGS) grant No. 203/PFIZIK/671064. PSP thanks the DRDO, Government of India, for a Junior Research Fellowship (JRF).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2370).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
- Bruker (2005). APEX2 (Version 1.27), SAINT (Version 7.12a) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.
- Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
- Patil, P. S., Dharmaprakash, S. M., Fun, H.-K. & Karthikeyan, M. S. (2006). J. Cryst. Growth, 297, 111-116.
- Sheldrick, G. M. (1998). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
- Shettigar, V., Patil, P. S., Dharmaprakash, S. M., Sridhar, M. A. & Shashidra Prasad, J. (2006). J. Cryst. Growth, 295, 44-49.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

- Uchida, T., Kozawa, K., Sakai, T., Aoki, M., Yoguchi, H., Abduryim, A. & Watanabe, Y. (1998). Mol. Cryst. Liq. Cryst. 315, 135-140.
- Watson, G. J. R., Turner, A. B. & Allen, S. (1993). Organic Materials for Nonlinear Optics III, edited by G. J. Ashwell & D. Bloor, pp. 112-117. RSC Special Publication No. 137.

supplementary materials

Acta Cryst. (2007). E63, o2692 [doi:10.1107/S1600536807019745]

(2E)-3-[4-(Dimethylamino)phenyl]-1-(3-nitrophenyl)prop-2-en-1-one

M. M. Rosli, P. S. Patil, H.-K. Fun, I. A. Razak and S. M. Dharmaprakash

Comment

Many chalcone derivatives crystallize as noncentrosymmetric structures and display significant non-linear optical (NLO) properties (Uchida *et al.*, 1998; Patil *et al.*, 2006; Shettigar *et al.*, 2006). Crystals of the title compound, (I), do not exhibit second-order NLO properties, as the compound crystallizes in a centrosymmetric space group (Watson *et al.*, 1993).

Bond lengths and angles in (I) (Fig. 1) have normal values (Allen *et al.*, 1987). The dihedral angle between the benzene rings is $1.56 (7)^{\circ}$. The plane through the enone group (O1/C7—C9) makes dihedral angles of 10.47 (7) and 9.23 (7)°, respectively, with the C1—C6 and C10—C15 benzene rings. The nitro group attached at atom C2 is almost coplanar with the C1—C6 benzene ring, with torsion angles O2–N2–C2–C1 and O3–N2–C2–C3 of -2.5 (2)° and -2.1 (2)°, respectively. The dimethylamino group is twisted slightly away from the attached C10—C15 benzene ring, with torsion angles C16–N1–C13–C14 and C17–N1–C13–C12 of 10.5 (2)° and -8.3 (2)°, respectively.

An intramolecular C9—H9A···O1 interaction is observed in the molecular structure of (I), and it generates an S(5) ring motif (Bernstein *et al.*, 1995). The molecules are linked into a chain along the [0 1 1] direction by intermolecular C17—H17C···O3ⁱ hydrogen bonds (Table 1). In addition, π - π interactions involving the C1—C6 (centroid Cg1) and C10—C15 (centroid Cg2) benzene rings is observed, with a Cg1···Cg2ⁱⁱ distance of 3.5164 (8) Å. Symmetry codes: (i) x,-1+y,-1+z; (ii) 1-x, -y, 1-z.

Experimental

N,*N*-dimethylaminobenzaldehyde (0.01 mol) and 3-nitroacetophenone (0.01 mol) were stirred in methanol (60 ml) at room temperature. 10% of NaOH aqueous solution (5 g) was added and the mixture was stirred for 2 h. The resulting precipitate was filtered off, washed with water and dried. The resulting crude product recrystallized from acetone. Crystals of (I) suitable for X-ray analysis were grown by slow evaporation of an acetone solution at room temperature.

Refinement

All H atoms were refined using a riding model, with C—H distances in the range 0.93-0.96 Å. The $U_{iso}(H)$ values were constrained to be $1.5U_{eq}$ of the carrier atom for methyl H and $1.2U_{eq}$ for the remaining H atoms.

Figures

Figure 1 The molecular structure of (I), showing 50% probability displacement ellipsoids and the atomic numbering. The dashed line indicates a hydrogen bond. Figure 2 The crystal packing of (I), viewed down the a axis. Hydrogen bonds are shown as dashed lines.

(2E)-3-[4-(dimethylamino)phenyl]-1-(3-nitrophenyl) prop-2-en-1-one

Crystal data	
C ₁₇ H ₁₆ N ₂ O ₃	Z = 2
$M_r = 296.32$	$F_{000} = 312$
Triclinic, <i>P</i> T	$D_{\rm x} = 1.377 \ {\rm Mg \ m}^{-3}$
Hall symbol: -P 1	Mo K α radiation $\lambda = 0.71073$ Å
a = 6.4326 (2) Å	Cell parameters from 2515 reflections
b = 7.1724 (2) Å	$\theta = 3.0 - 30.0^{\circ}$
c = 16.5000 (6) Å	$\mu = 0.10 \text{ mm}^{-1}$
$\alpha = 93.989 \ (2)^{\circ}$	T = 100.0 (1) K
$\beta = 96.973 \ (2)^{\circ}$	Plate, red
$\gamma = 107.844 \ (2)^{\circ}$	$0.58 \times 0.25 \times 0.04 \text{ mm}$
$V = 714.68 (4) \text{ Å}^3$	

Data collection

Bruker SMART APEX2 CCD area-detector diffractometer	4139 independent reflections
Radiation source: fine-focus sealed tube	2776 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.047$
Detector resolution: 8.33 pixels mm ⁻¹	$\theta_{\text{max}} = 30.0^{\circ}$
T = 100.0(1) K	$\theta_{\min} = 1.3^{\circ}$
ω scans	$h = -9 \rightarrow 9$
Absorption correction: multi-scan (SADABS; Bruker, 2005)	$k = -10 \rightarrow 10$
$T_{\min} = 0.822, \ T_{\max} = 0.996$	$l = -23 \rightarrow 22$
12950 measured reflections	

Refinement

Refinement on F^2	H-atom parameters constrained
Least-squares matrix: full	$w = 1/[\sigma^2(F_o^2) + (0.0746P)^2 + 0.1229P]$ where $P = (F_o^2 + 2F_c^2)/3$
$R[F^2 > 2\sigma(F^2)] = 0.054$	$(\Delta/\sigma)_{\rm max} = 0.001$
$wR(F^2) = 0.162$	$\Delta \rho_{max} = 0.31 \text{ e } \text{\AA}^{-3}$
<i>S</i> = 1.07	$\Delta \rho_{min} = -0.33 \text{ e } \text{\AA}^{-3}$
4139 reflections	Extinction correction: none
201 parameters	

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites

Special details

Experimental. The data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \text{sigma}(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	0.20474 (19)	0.31302 (18)	0.58398 (7)	0.0307 (3)
O2	0.4006 (2)	0.58466 (19)	0.86676 (8)	0.0358 (3)
O3	0.7425 (2)	0.7068 (2)	0.92259 (7)	0.0403 (3)
N1	0.3580 (2)	-0.16780 (19)	0.12184 (8)	0.0242 (3)
N2	0.5992 (2)	0.6233 (2)	0.86426 (8)	0.0268 (3)
C1	0.5108 (3)	0.4710 (2)	0.72163 (9)	0.0208 (3)
H1A	0.3618	0.4382	0.7267	0.025*
C2	0.6705 (3)	0.5694 (2)	0.78695 (9)	0.0214 (3)
C3	0.8939 (3)	0.6208 (2)	0.78275 (10)	0.0240 (3)
H3A	0.9984	0.6875	0.8278	0.029*
C4	0.9570 (3)	0.5698 (2)	0.70954 (10)	0.0241 (3)
H4A	1.1064	0.6022	0.7051	0.029*
C5	0.8002 (3)	0.4708 (2)	0.64249 (10)	0.0219 (3)
H5A	0.8458	0.4373	0.5937	0.026*
C6	0.5761 (2)	0.4212 (2)	0.64736 (9)	0.0193 (3)
C7	0.3950 (3)	0.3212 (2)	0.57715 (9)	0.0210 (3)
C8	0.4516 (3)	0.2383 (2)	0.50196 (9)	0.0214 (3)
H8A	0.5986	0.2544	0.4973	0.026*
C9	0.2920 (3)	0.1398 (2)	0.44018 (9)	0.0215 (3)
H9A	0.1479	0.1214	0.4497	0.026*
C10	0.3166 (3)	0.0582 (2)	0.36015 (9)	0.0199 (3)
C11	0.5214 (3)	0.0810 (2)	0.33381 (9)	0.0211 (3)
H11A	0.6505	0.1461	0.3699	0.025*
C12	0.5359 (3)	0.0091 (2)	0.25577 (9)	0.0214 (3)
H12A	0.6743	0.0273	0.2401	0.026*
C13	0.3440 (3)	-0.0919 (2)	0.19893 (9)	0.0205 (3)
C14	0.1394 (3)	-0.1144 (2)	0.22557 (9)	0.0228 (3)

supplementary materials

H14A	0.0099	-0.1794	0.1898	0.027*
C15	0.1271 (3)	-0.0417 (2)	0.30389 (9)	0.0222 (3)
H15A	-0.0110	-0.0596	0.3197	0.027*
C16	0.1605 (3)	-0.2440 (3)	0.06120 (10)	0.0302 (4)
H16A	0.0543	-0.3489	0.0816	0.045*
H16B	0.1976	-0.2932	0.0112	0.045*
H16C	0.0988	-0.1404	0.0507	0.045*
C17	0.5695 (3)	-0.1231 (3)	0.09321 (11)	0.0336 (4)
H17A	0.6665	-0.1716	0.1284	0.050*
H17B	0.6326	0.0170	0.0941	0.050*
H17C	0.5499	-0.1850	0.0381	0.050*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0225 (6)	0.0426 (7)	0.0256 (6)	0.0097 (5)	0.0054 (5)	-0.0044 (5)
02	0.0301 (7)	0.0514 (8)	0.0276 (7)	0.0160 (6)	0.0078 (5)	-0.0043 (5)
03	0.0400 (8)	0.0535 (8)	0.0233 (7)	0.0158 (6)	-0.0023 (6)	-0.0142 (6)
N1	0.0239 (7)	0.0293 (7)	0.0180 (7)	0.0086 (5)	0.0007 (5)	-0.0030 (5)
N2	0.0304 (8)	0.0307 (7)	0.0209 (7)	0.0136 (6)	0.0032 (6)	-0.0023 (5)
C1	0.0224 (8)	0.0197 (7)	0.0220 (8)	0.0091 (6)	0.0042 (6)	0.0016 (5)
C2	0.0273 (8)	0.0209 (7)	0.0188 (7)	0.0115 (6)	0.0056 (6)	0.0005 (5)
C3	0.0259 (8)	0.0201 (7)	0.0241 (8)	0.0069 (6)	-0.0009 (6)	-0.0006 (6)
C4	0.0198 (8)	0.0220 (7)	0.0305 (9)	0.0068 (6)	0.0047 (6)	0.0018 (6)
C5	0.0246 (8)	0.0205 (7)	0.0233 (8)	0.0097 (6)	0.0077 (6)	0.0025 (6)
C6	0.0231 (8)	0.0161 (6)	0.0199 (7)	0.0076 (6)	0.0044 (6)	0.0026 (5)
C7	0.0238 (8)	0.0200 (7)	0.0197 (7)	0.0072 (6)	0.0055 (6)	0.0013 (5)
C8	0.0228 (8)	0.0221 (7)	0.0206 (8)	0.0087 (6)	0.0049 (6)	0.0006 (5)
C9	0.0248 (8)	0.0200 (7)	0.0217 (8)	0.0090 (6)	0.0059 (6)	0.0029 (6)
C10	0.0249 (8)	0.0167 (6)	0.0186 (7)	0.0076 (6)	0.0027 (6)	0.0015 (5)
C11	0.0220 (8)	0.0196 (7)	0.0198 (7)	0.0058 (6)	0.0000 (6)	-0.0006 (5)
C12	0.0209 (7)	0.0221 (7)	0.0212 (8)	0.0071 (6)	0.0035 (6)	0.0004 (6)
C13	0.0260 (8)	0.0172 (6)	0.0185 (7)	0.0082 (6)	0.0019 (6)	0.0000 (5)
C14	0.0228 (8)	0.0211 (7)	0.0221 (8)	0.0060 (6)	-0.0016 (6)	-0.0009 (6)
C15	0.0220 (8)	0.0225 (7)	0.0230 (8)	0.0081 (6)	0.0039 (6)	0.0027 (6)
C16	0.0315 (9)	0.0332 (9)	0.0209 (8)	0.0065 (7)	-0.0012 (7)	-0.0037 (6)
C17	0.0308 (9)	0.0447 (10)	0.0243 (9)	0.0125 (8)	0.0054 (7)	-0.0061 (7)

Geometric parameters (Å, °)

O1—C7	1.2268 (18)	C8—H8A	0.93
O2—N2	1.2282 (18)	C9—C10	1.453 (2)
O3—N2	1.2253 (18)	С9—Н9А	0.93
N1—C13	1.3726 (19)	C10-C15	1.400 (2)
N1—C17	1.445 (2)	C10-C11	1.403 (2)
N1—C16	1.450 (2)	C11—C12	1.378 (2)
N2—C2	1.4728 (19)	C11—H11A	0.93
C1—C2	1.377 (2)	C12—C13	1.416 (2)
C1—C6	1.401 (2)	C12—H12A	0.93

C1—H1A	0.93	C13—C14	1.404 (2)
C2—C3	1.382 (2)	C14—C15	1.380 (2)
C3—C4	1.380 (2)	C14—H14A	0.93
С3—НЗА	0.93	С15—Н15А	0.93
C4—C5	1.388 (2)	C16—H16A	0.96
C4—H4A	0.93	C16—H16B	0.96
C5—C6	1.389 (2)	С16—Н16С	0.96
С5—Н5А	0.93	С17—Н17А	0.96
C6—C7	1 503 (2)	C17—H17B	0.96
C7—C8	1 471 (2)	C17—H17C	0.96
C8—C9	1.339 (2)		
C13_N1_C17	120.03 (13)	С10—С9—Н94	116.0
C_{13} N1 C_{16}	119 75 (13)	$C_{10} = C_{10} = C_{11}$	117.16(13)
C17-N1-C16	117.94 (13)	$C_{15} = C_{10} = C_{9}$	119.05 (14)
03 - N2 - 02	123 47 (14)	$C_{11} - C_{10} - C_{9}$	117.03(14) 123.73(14)
03 - N2 - 02	123.47(14) 117.85(14)	$C_{11} = C_{10} = C_{10}$	123.75(14) 121.55(14)
03 - N2 - C2	117.03 (14)	C12—C11—H11A	110.2
$C_2 = C_1 = C_2$	118.07 (13)	C10 C11 H11A	119.2
$C_2 = C_1 = C_0$	120.5	C_{10} C_{11} C_{12} C_{13}	119.2 121 21 (14)
C6 C1 H1A	120.5	$C_{11} = C_{12} = C_{13}$	121.21 (14)
C_{0}	120.3 122.92(14)	C12 - C12 - H12A	119.4
$C_1 = C_2 = C_3$	122.03(14) 118 35 (14)	N1 C13 C14	117.4
$C_1 = C_2 = N_2$	118.33(14) 118.82(14)	N1 = C13 = C12	121.02(14) 121.33(14)
$C_3 = C_2 = N_2$	110.02(14) 117.94(15)	11 - 013 - 012	121.33(14) 117.04(12)
$C_4 = C_3 = C_2$	117.04 (13)	C14 - C13 - C12	117.04(13) 121.22(14)
$C_4 = C_5 = H_2 A$	121.1	C_{15} C_{14} C_{15} C_{15} C_{16} C_{16} C_{17} C	121.22 (14)
$C_2 = C_3 = H_3 A$	121.1	C13 - C14 - H14A	119.4
$C_3 = C_4 = C_5$	120.78 (15)	C13C14H14A	119.4
C3—C4—H4A	119.6		121.82 (14)
С5—С4—Н4А	119.6	CI4—CI5—HI5A	119.1
C4 = C5 = C6	120.80 (14)		119.1
С4—С5—Н5А	119.6	NI-CIG-HIGA	109.5
C6—C5—H5A	119.6	NI-CI6-HI6B	109.5
C5-C6-C1	118.76 (14)		109.5
$C_{5} = C_{6} = C_{7}$	124.49 (13)	NI-CI6-HI6C	109.5
CI = C6 = C7	116./3 (13)	H16A—C16—H16C	109.5
01	122.01 (14)	H16B—C16—H16C	109.5
$01 - C_{1} - C_{6}$	118.94 (13)	NI-CI7-HI7A	109.5
$C_{8} - C_{7} - C_{6}$	119.04 (13)	NI-CI/-HI/B	109.5
C9 = C8 = C7	120.16 (14)	HI/A—CI/—HI/B	109.5
C9—C8—H8A	119.9	NI—CI7—HI7C	109.5
C/—C8—H8A	119.9	H1/A—C1/—H1/C	109.5
C8—C9—C10	127.92 (15)	H1/B—C1/—H1/C	109.5
С8—С9—Н9А	116.0		
C6—C1—C2—C3	-0.4 (2)	C6—C7—C8—C9	176.63 (13)
C6—C1—C2—N2	179.16 (12)	C7—C8—C9—C10	176.15 (14)
O3—N2—C2—C1	178.37 (14)	C8—C9—C10—C15	179.55 (14)
O2—N2—C2—C1	-2.5 (2)	C8—C9—C10—C11	-3.4 (2)
O3—N2—C2—C3	-2.1 (2)	C15-C10-C11-C12	0.3 (2)

supplementary materials

O2—N2—C2—C3	177.06 (14)	C9-C10-C11-C12	-176.72 (14)
C1—C2—C3—C4	-0.1 (2)	C10-C11-C12-C13	-0.3 (2)
N2—C2—C3—C4	-179.64 (13)	C17—N1—C13—C14	173.04 (14)
C2—C3—C4—C5	0.2 (2)	C16—N1—C13—C14	10.5 (2)
C3—C4—C5—C6	0.2 (2)	C17—N1—C13—C12	-8.3 (2)
C4—C5—C6—C1	-0.7 (2)	C16—N1—C13—C12	-170.82 (13)
C4—C5—C6—C7	177.56 (13)	C11-C12-C13-N1	-178.40 (13)
C2-C1-C6-C5	0.7 (2)	C11-C12-C13-C14	0.3 (2)
C2—C1—C6—C7	-177.63 (12)	N1-C13-C14-C15	178.41 (13)
C5—C6—C7—O1	-168.19 (14)	C12—C13—C14—C15	-0.3 (2)
C1—C6—C7—O1	10.1 (2)	C13-C14-C15-C10	0.3 (2)
C5—C6—C7—C8	11.0 (2)	C11-C10-C15-C14	-0.3 (2)
C1—C6—C7—C8	-170.71 (12)	C9—C10—C15—C14	176.88 (13)
O1—C7—C8—C9	-4.2 (2)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D -\!\!\!-\!\!\!-\!\!\!\!-\!\!\!\!\!-\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$
С9—Н9А…О1	0.93	2.45	2.798 (2)	102
C17—H17C···O3 ⁱ	0.96	2.59	3.430 (2)	146
Symmetry codes: (i) $x, y=1, z=1$.				

Fig. 1

